China Best Sales 10L 20L 30L 40L 50 L Used Factory Supply Oxygen Cylinder/Gas Cylinder Filled with Argon Gas/UHP N2/UHP O2/Sf6/CF4 vacuum pump belt

Product Description

Our Seamless Steel Oxygen Cylinders are mainly produced conformity with Standard GB5099-94, ISO9809-1/3 and EN1964. The raw material is either Seamless Steel Pipe or Steel Billet.

Our Seamless Steel Oxygen Cylinders can be widely used in many fields, such as industry, medical equipment, fire protection and scientific research, for storage and transport of permanent gases and high pressure liquefied gases, such as Oxygen Gas, Carbon Dioxide Gas, Argon Gas, Nitrogen Gas, Helium Gas, Carbon Monoxide Gas, SF6 Gas, N2O gas, Air, etc.

Our Oxygen Cylinder is widely applied in chemical, metallurgical, mechanical, medical, scientific research and building industry.

What we can promise for you:
1. High quality and security gas cylinders
2. Best price in the market
3. Fast delivery (3~4 weeks)
 

Type Diameter (mm) Capacity (L) Height (mm) Weight (kg) Working pressure(Mpa) Design wall thickness(mm) Material
WMA108-1.4-15 108 1.4 240 2.8 15 2.9
(GB5099)
3.2
(ISO9809-
3)
37Mn
WMA108-2-15 2 310 3.5
WMA108-3-15 3 437 4.8
WMA121-2.8-15 121 2.8 350 4.6 15 3.5 37Mn
WMA121-3-15 3 375 4.9
WMT121-4-15 4 477 5.8
WMA140-4-15 140 4 372 5.77 15 4.1 37Mn
WMA140-5-15 5 458 7.52
WMA140-8-15 8 671 10.72
WMA152-7-15 152 7 528 9.57 15 4.4 37Mn
WMA152-8-15 8 600 10.66
WMA152-10-15 10 726 12.6
WMA152-15-15 15 1012 17.7
WMA159-4-15 159 4 320 6.8 15 4.4(GB5099) 4.7(ISO 9809-3) 37Mn
WMA159-8-15 8 554 10.8
WMA159-10-15 10 665 12.7
WMA159-15-15 15 945 17.5
WMA180-8-15 180 8 475 13.9 15 5.3 37Mn
WMA180-10-15 10 565 16.2
WMA180-12-15 12 655 18.4
WMA180-15-15 15 785 21.7
WMA180-20-15 20 1571 27.3
WMA219-20-15 219 20 710 27.8 15 5.7(GB5099) 6.1( ISO 9809-3) 37Mn
WMA219-40-15 40 1325 48.5
WMA219-45-15 45 1455 50.8
WMA219-50-15 50 1605 55.6
WZA232-40-15 232 40 1160 44.2 15 5.3 37Mn
WZA232-47-15 47 1350 50.3
WZA232-50-15 50 1430 53
WZA267-40-15 267 40 930 45.5 15 5.8 37Mn
WZA267-50-15 50 1127 53.9
WZA267-70-15 70 1521 70.7
WGA232-30-20 232 30 916 37.4 20 5.2 34CrMo4
WGA232-38-20 38 1127 44.8
WGA232-40-20 40 1180 46.7
WGA232-46.7-20 46.7 1358 52.9
WGA232-47-20 47 1366 53.2
WGA232-50-20 50 1445 56
WGA232-60-20 60 1710 65.2

Advantages of our gas cylinders:

HIGH QUALITY
We have implemented strict and complete quality control system, which ensures each gas cylinder can meet quality requirements. All gas cylinders must be strictly inspected before shipment.

COMPETITVE PRICE
As a big gas cylinder factory, our output is over 4000 PCS per day, that will effectively reduce labor cost and other cost of gas cylinders like valve and raw materials. That’s why we could always offer you best price !
 

GOOD AND PROFESSIONAL SERVICE
We have worked in this field for over 10 years, all of our egineers and sales could supply best suggestions and answers for your queations, no matter gas cylinders or the gas filling process in fillowing.
Since now, we could supply you:
1. Gas filling service: N2O, Argon, CO2, Helium, Oxygen, Nitrogen, ect.
2. Used Gas cylinder insepection service too keep safe
3. Related gas equipment supply
When you chose RUIMING, you chose a trustworthy partner!

FAST DELIVERY TIME
Normal delivery time for 40L gas cylinder: 15 days
50L 200 BAR gas cylinders: 25-30 days
If you need gas filling , it will take more 10 days.

OEM ACCEPTED
OEM is accepted in our company, no matter COLOR, VALVE, CAP/HANDLE, and marks. All these could be fully filled.

 

Function: Storage Pressure Vessel, Heat Pressure Vessel, Reaction Pressure Vessel
Application: Gas
Material: Stainless Steel
Pressure: 10.0MPa≤p<100.0MPa
Storage Medium: Flammable/Toxic
Pressure Level: High Pressure (10.0MPa≤p<100.0MPa)
Samples:
US$ 80/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

hydraulic cylinder

What role do hydraulic cylinders play in optimizing power distribution and efficiency?

Hydraulic cylinders play a significant role in optimizing power distribution and efficiency in various applications. They are widely used in industries such as construction, manufacturing, agriculture, and transportation, where efficient power transmission and precise control are essential. Here’s a detailed explanation of the role hydraulic cylinders play in optimizing power distribution and efficiency:

1. Power Transmission:

– Hydraulic cylinders serve as a means of power transmission in hydraulic systems. They convert the hydraulic fluid’s pressure and flow into linear mechanical force, allowing for controlled movement of loads. Hydraulic cylinders efficiently transmit power from an energy source, such as a hydraulic pump, to the working components of the system. The ability to transmit power over long distances with minimal energy losses makes hydraulic cylinders an efficient choice for various applications.

2. High Power Density:

– Hydraulic cylinders offer high power density, meaning they can generate significant force relative to their size. This characteristic enables compact and lightweight hydraulic systems while delivering substantial power output. Hydraulic cylinders can produce high forces even at low operating speeds, making them suitable for heavy-duty applications. The high power density of hydraulic cylinders contributes to the optimization of power distribution by maximizing the force output while minimizing the system’s overall size and weight.

3. Load Handling and Control:

– Hydraulic cylinders provide precise load handling and control capabilities, contributing to power distribution optimization. By adjusting the flow of hydraulic fluid to the cylinder, operators can control the speed, force, and direction of the cylinder’s movement. This level of control allows for accurate positioning and smooth operation of loads, reducing energy waste and improving overall system efficiency. Hydraulic cylinders enable precise load handling and control, leading to optimal power distribution and improved energy efficiency.

4. Variable Force and Speed:

– Hydraulic cylinders offer the advantage of variable force and speed control. By regulating the flow of hydraulic fluid, the force exerted by the cylinder can be adjusted as needed. This flexibility enables hydraulic systems to adapt to different load requirements, optimizing power distribution. Hydraulic cylinders can operate at varying speeds, allowing for efficient power distribution across different stages of an operation. The ability to vary force and speed according to the application’s demands enhances energy efficiency and overall system performance.

5. Energy Recovery:

– Hydraulic cylinders can contribute to energy efficiency through energy recovery mechanisms. In certain applications, hydraulic systems utilize accumulators to store and release energy. Hydraulic cylinders can store energy during deceleration or when the load is lowering, and then release it to assist in subsequent movements. This energy recovery process reduces the overall energy consumption of the system, optimizing power distribution and improving efficiency. The ability to recover and reuse energy enhances the sustainability and cost-effectiveness of hydraulic systems.

6. Integrated Control Systems:

– Hydraulic cylinders can be integrated into advanced control systems, such as servo control or proportional control systems. These systems utilize electronic feedback, sensors, and control algorithms to optimize power distribution and efficiency. By continuously monitoring and adjusting the flow of hydraulic fluid, the control systems ensure that the cylinder operates at the most efficient operating point, minimizing energy losses and maximizing power distribution. Integrated control systems enhance the overall energy efficiency of hydraulic systems and contribute to power optimization.

7. System Efficiency Improvement:

– Hydraulic cylinders, when combined with other components in a hydraulic system, contribute to overall system efficiency improvement. The integration of efficient hydraulic pumps, valves, and actuators helps minimize energy losses, pressure drops, and heat generation. By optimizing the design and configuration of the hydraulic system, including the selection of appropriate cylinder sizes, operating pressures, and control strategies, power distribution can be optimized, leading to improved energy efficiency. Proper system design and component selection are critical for achieving optimal power distribution and efficiency.

In summary, hydraulic cylinders play a crucial role in optimizing power distribution and efficiency in various applications. They enable efficient power transmission, offer high power density, provide precise load handling and control, allow for variable force and speed control, facilitate energy recovery, can be integrated into advanced control systems, and contribute to overall system efficiency improvement. By leveraging the capabilities of hydraulic cylinders, industries can achieve better power utilization, reduced energy consumption, and improved system performance.

hydraulic cylinder

Advancements in Hydraulic Cylinder Technology Improving Corrosion Resistance

Advancements in hydraulic cylinder technology have led to significant improvements in corrosion resistance. Corrosion is a major concern in hydraulic systems, especially in environments where cylinders are exposed to moisture, chemicals, or corrosive agents. These advancements aim to enhance the durability and longevity of hydraulic cylinders. Let’s explore some of the key advancements in hydraulic cylinder technology that have improved corrosion resistance:

  1. Corrosion-Resistant Materials: The use of corrosion-resistant materials is a fundamental advancement in hydraulic cylinder technology. Stainless steel, for example, offers excellent resistance to corrosion, making it a popular choice in marine, offshore, and other corrosive environments. Additionally, advancements in metallurgy have led to the development of specialized alloys and coatings that provide enhanced corrosion resistance, extending the lifespan of hydraulic cylinders.
  2. Surface Treatments and Coatings: Various surface treatments and coatings have been developed to protect hydraulic cylinders from corrosion. These treatments can include electroplating, galvanizing, powder coating, and specialized corrosion-resistant coatings. These coatings create a barrier between the cylinder surface and corrosive elements, preventing direct contact and inhibiting the onset of corrosion. The selection of appropriate coatings depends on the specific application and environmental conditions.
  3. Sealing Technology: Effective sealing systems are crucial in preventing water, moisture, and contaminants from entering the cylinder and causing corrosion. Advancements in sealing technology have led to the development of high-quality seals and advanced sealing designs that offer superior resistance to corrosion. These seals are typically made from materials specifically engineered to withstand corrosive environments, ensuring long-term sealing performance and minimizing the risk of corrosion-related issues.
  4. Improved Surface Finishes: The surface finish of hydraulic cylinders plays a role in their resistance to corrosion. Advancements in machining and polishing techniques have allowed for smoother and more uniform surface finishes. Smoother surfaces reduce the likelihood of corrosion initiation and make it easier to clean and maintain hydraulic cylinders. Additionally, specialized finishes, such as passivation or chemical treatments, can be applied to further enhance corrosion resistance.
  5. Environmental Protection Features: Hydraulic cylinders can be equipped with additional features to protect against corrosion. These features may include protective boots, bellows, or shields that guard vulnerable areas from exposure to corrosive agents. By incorporating these protective elements into the design, hydraulic cylinders can withstand harsh environments and minimize the risk of corrosion-related damage.

In summary, advancements in hydraulic cylinder technology have significantly improved corrosion resistance. The use of corrosion-resistant materials, advanced surface treatments and coatings, innovative sealing technology, improved surface finishes, and the incorporation of environmental protection features have all contributed to enhanced durability and longevity of hydraulic cylinders in corrosive environments. These advancements ensure reliable performance and reduce the maintenance and replacement costs associated with corrosion-related issues.

hydraulic cylinder

What maintenance practices are essential for extending the lifespan of hydraulic cylinders?

Maintaining hydraulic cylinders is crucial for extending their lifespan and ensuring optimal performance. Regular maintenance helps prevent premature wear, damage, and failure, ultimately reducing downtime and saving costs. Here are some essential maintenance practices to consider for extending the lifespan of hydraulic cylinders:

1. Regular Inspections:

– Conduct routine visual inspections of hydraulic cylinders to identify any signs of damage, leaks, or wear. Inspect the cylinder body, piston rod, seals, and mounting points. Look for fluid leaks, rust, dents, or any abnormal wear patterns. Early detection of issues allows for timely repairs or replacements, preventing further damage and extending the lifespan of the cylinder.

2. Cleanliness:

– Maintain a clean environment around hydraulic cylinders to prevent contaminants from entering the system. Dust, dirt, and debris can damage seals and other internal components, leading to accelerated wear and reduced performance. Regularly clean the cylinder and its surroundings to minimize the risk of contamination.

3. Proper Lubrication:

– Adequate lubrication is critical for the smooth operation and longevity of hydraulic cylinders. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant. Apply lubrication to the cylinder’s moving parts, such as the piston rod, to reduce friction and minimize wear.

4. Seal Maintenance:

– Seals play a vital role in preventing hydraulic fluid leaks and maintaining the cylinder’s performance. Inspect and replace worn or damaged seals promptly. Ensure that seals are properly installed and lubricated. Regularly clean the seal grooves to remove any debris that could compromise seal effectiveness.

5. Pressure Checks:

– Periodically check the hydraulic system’s pressure to ensure it is within the recommended operating range. Excessive pressure can strain the cylinder and its components, leading to premature wear. Monitor pressure levels and make adjustments as necessary to prevent overloading the cylinder.

6. Control Valve Maintenance:

– Maintain and inspect control valves that regulate the flow and direction of hydraulic fluid. Ensure that the valves are functioning correctly and not causing excessive stress or pressure spikes in the cylinder. Clean or replace control valves if they are damaged or malfunctioning.

7. Cylinder Alignment:

– Proper alignment of hydraulic cylinders is essential for their longevity. Misalignment can cause excessive side loads, leading to uneven wear and potential damage. Ensure that the cylinder is correctly aligned with other components and that the mounting points are secure.

8. Preventing Overloading:

– Avoid subjecting hydraulic cylinders to loads exceeding their rated capacity. Overloading can cause internal damage, seal failure, and reduced lifespan. Ensure that the load requirements are within the cylinder’s capabilities and consider using safety devices like overload protection systems when necessary.

9. Training and Operator Awareness:

– Provide proper training to equipment operators on the correct use and handling of hydraulic cylinders. Operators should be aware of the cylinder’s limitations, safe operating procedures, and the importance of regular maintenance. Promote a culture of proactive maintenance and encourage operators to report any potential issues promptly.

10. Documentation and Record-Keeping:

– Maintain detailed documentation of all maintenance activities, including inspections, repairs, and replacements. Keep records of lubrication schedules, pressure checks, and any maintenance performed on the hydraulic cylinders. This documentation helps track the cylinder’s history, identify recurring issues, and plan future maintenance effectively.

By following these maintenance practices, hydraulic cylinder lifespan can be extended, ensuring reliable performance and reducing the risk of unexpected failures. Regular inspections, cleanliness, proper lubrication, seal maintenance, pressure checks, control valve maintenance, cylinder alignment, preventing overloading, operator training, and documentation contribute to the overall longevity and optimal functioning of hydraulic cylinders.

China Best Sales 10L 20L 30L 40L 50 L Used Factory Supply Oxygen Cylinder/Gas Cylinder Filled with Argon Gas/UHP N2/UHP O2/Sf6/CF4   vacuum pump belt	China Best Sales 10L 20L 30L 40L 50 L Used Factory Supply Oxygen Cylinder/Gas Cylinder Filled with Argon Gas/UHP N2/UHP O2/Sf6/CF4   vacuum pump belt
editor by CX 2023-11-11